Exemplar Problem Trigonometric Functions

27. Find the general solution of the equation $5\cos^2\theta + 7\sin^2\theta - 6 = 0$ Solution: According to the question, $5\cos^2\theta + 7\sin^2\theta - 6 = 0$ We know that, $\sin^2 \theta = 1 - \cos^2 \theta$ Therefore, $5\cos^{2}\theta + 7(1 - \cos^{2}\theta) - 6 = 0$ $\Rightarrow 5\cos^2\theta + 7 - 7\cos^2\theta - 6 = 0$ \Rightarrow -2cos ² θ + 1 = 0 $\Rightarrow \cos^2 \theta = \frac{1}{2}$ Therefore, $\cos \theta = \pm 1/\sqrt{2}$ Therefore, $\cos \theta = \cos \pi/4$ or $\cos \theta = \cos 3\pi/4$ Since, solution of $\cos x = \cos \alpha$ is given by $x = 2m\pi \pm \alpha \forall m \in Z$ $\theta = n\pi \pm \pi/4, n \in Z$